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Abstract

We present a novel life-cycle model, grounded in demographic principles, to ex-
amine the influence of medical progress, technological progress, and the reduction in
age-independent mortality on the rise in life expectancy across socioeconomic groups.
Our findings indicate that the expanding disparity in life expectancy across income
groups, as well as the growing income inequality among educational groups in the US,
can be attributed to a selection process that changes the composition of the initial char-
acteristics (learning ability, schooling effort, and health frailty) of the income groups.
This selection process is triggered by the rising income and medical advancements that
emerged with the cardiovascular revolution in the 1970s. (JEL: D15, 112, 114, J17, J24)

1 Introduction

Over the past decades we have seen in many countries an increasing inequality not just
in terms of income and wealth, but also in terms of health and life expectancy (OECD,
2017; Murtin et al., 2022). For instance, Waldron (2007) shows for the US how the gap in
life expectancy at age sixty five between the top half and the bottom half of the income
distribution increased monotonically from less than one year for the 1912 birth cohort to
almost six years for the 1941 birth cohort. More recent data shows that this trend continues
in the US, and the gap turns out to be even larger when more income groups are considered
(NASEM and others, 2015). The projected gap in life expectancy between the top and the
bottom one percent, for instance, is fourteen years for the 1960 birth cohort (Chetty et al.,
2016).

This trend has political, economic, and social consequences. It not only poses challenges
to the health sector (Frankovic and Kuhn, 2019), but also affects the public transfer sys-
tem by making it more regressive, since short-lived and poorer workers end up subsidizing
the pension benefits of long-lived and richer workers (Sanchez-Romero and Prskawetz, 2017;
Lee and Sanchez-Romero, 2019; Sdnchez-Romero et al., 2020). To derive effective policy
responses that at least contain if not close the gap and mitigate its consequences, it is nec-
essary to investigate the sources of the increasing inequality in life expectancy. Empirically,
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there are methodological issues that complicate its study, such as reverse causality and the
changing meaning of metrics on income and educational attainment over time, among others
(Lee and Sanchez-Romero, 2019). To overcome these difficulties, it is necessary to assess
the direction of causality between health and income and to account for how inequality is
emerging over the life span of individuals, across socio-economic strata, and across cohorts
over time.

To this end, we propose a novel life cycle model that accounts for frailty, in the spirit of
Vaupel et al. (1979). Individuals decide about their educational attainment, consumption
path, labor supply, and health investments. Given an initial health status (initial frailty level)
the path of health investments determines the most likely or modal age at death. Dating
back to Lexis (1879), the concept of the modal age at death has been used extensively for
analyzing longevity in Demography, Actuarial Science, Statistics, and Biology. We propose
using the modal age at death as a summary measure of health for several reasons. First,
survival functions can be expressed in terms of the modal age at death (Horiuchi et al.,
2013) and, therefore, the model generates realistic survival profiles, which are important
for relevant policy analysis. Second, akin to the notion of health capital (Grossman, 1972;
Fonseca et al., 2020), a higher modal age at death translates into lower mortality. Third,
akin to the notion of health deficits (Dalgaard and Strulik, 2014), the modal age at death
can be observed across populations and, therefore, has an empirical grounding.! Fourth, the
modal age at death is calculated using age-specific death rates. Data on age-specific death
rates are available since the invention of the life table by John Graunt in 1662 and, therefore,
a wealth of data is publicly available data for its estimation. For instance, Fig. 1 shows the
evolution of the modal age at death in the US from 1950 to 2019 (see red line) compared
to all other countries (black dots) contained in the Human Mortality Database. Fifth, the
modal age at death is a category in which individuals would “naturally” think of in terms
of planning ahead, since it refers to the age to which individuals assign a high probability of
dying. Last, but not least, similar to the health capital model, the modal age at death has
no a priori upper bound, which allows individuals to invest in postponing their modal age
at death as long as it is economically optimal. The fact that the health state has no upper
bound, or lower bound, is a desirable feature when integrating this framework in dynamic
overlapping generations models.

Within the proposed model, the disparities among individuals in terms of their educa-
tion, income, life expectancy, and wealth arise from a combination of individual choices and
external (childhood) circumstances that shape their demographics and economic decisions.?
To describe the heterogeneity in childhood circumstances, we use three unobservable char-
acteristics (endowments) — namely learning ability, effort of schooling, and the initial modal
age at death — that are equally distributed across each birth cohort at the beginning of life.
Differences in the initial modal age at death account for the initial heterogeneity in health.
Heterogeneity in the learning ability translate into differences in labor income, while the
effort of schooling enables us to accommodate the changing composition of each educational
group in terms of learning ability and health across birth cohorts. Altogether, this allows
us to account for the fact that with better demographic and economic conditions faced by
successive birth cohort, those individuals that remain in the lower educational groups tend

IWhile health deficits are observable at the individual level, their link to survival and the modal age at
death can only be established at the population level.

2For expositional purposes, we abstract from random health or income shocks over the lifespan of indi-
viduals. To justify this assumption, we rely on the study by Huggett et al. (2011) who show that initial
heterogeneity (ability to learn, human capital, wealth at age 23) rather than random shocks explain about
61.2, 62.4 and 66.0 percent of the variation in US lifetime earnings, lifetime wealth and lifetime utility, re-
spectively. This is consistent with earlier findings by Cunha et al. (2005) that about 60 percent of earnings
variability is foreseen by agents and cannot therefore be attributed to uncertainty.
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Figure 1: Modal age at death. Dots represent the modal age at death for different countries
over time based on data from the Human Mortality Database (HMD). The modal age at death is
estimated following Horiuchi et al. (2013).

to be more and more negatively selected.?

We apply the model to understand the drivers of increasing inequality in life expectancy
by income. In particular, we focus on how exogenous factors, such as the reduction in age-
independent mortality (e.g. from infectious diseases or accidents), productivity growth, and
medical progress, influence education, income, and health outcomes across different birth
cohorts. To do so, we generate results by considering a large number of random draws from
the initial distribution of childhood endowments for each birth cohort (taken at twenty year
intervals), by solving the life-cycle model for each of these draws, and by thus obtaining dis-
tributions of life-cycle outcomes. Then, by allowing individuals to self-select into education
according to their initial endowment, we model life-cycle outcomes by educational category
and income level. We calibrate the model to US data, seeking to replicate developments of
key life-cycle indicators, such as life expectancy, the distribution of education over time, and
the increasing gap in life expectancy by education. The model is structurally calibrated us-
ing Bayesian melding with the IMIS algorithm (Poole and Raftery, 2000), targeting US data
on education, income, and mortality rates. To complete our analysis, we run counterfac-
tual scenarios, in which we shut down each exogenous factor: reduction in age-independent
mortality, productivity growth, and medical progress.

Our results show that the model is capable of replicating well the evolution of educa-
tional attainment, the distribution of income, and the death rates by education group for
the US birth cohorts born in 1900, 1920, 1940, and 1960. In addition, the model is ca-
pable of matching the evolution of the life expectancy gap across income groups for the
selected birth cohorts, in line with the empirical estimates of NASEM and others (2015) and
Chetty et al. (2016) as well as producing realistic results for health spending and the value of
life. Running counterfactual analyses, we show that medical progress, the reduction in age-
independent mortality, and productivity growth have contributed positively to the increase
in life expectancy for all income groups. After controlling for the initial characteristics of
individuals, our model suggests that medical progress, the reduction in age-independent mor-
tality, and productivity growth contribute almost equally to the increase in life expectancy

3A similar strategy has been applied by Sanchez-Romero et al. (2023) to study the impact of pension
reforms across heterogeneous individuals that differ inter alia in terms of their life expectancy and income.



across income groups. Therefore, the model suggests that the observed increasing difference
in life expectancy across income groups is due to the change in the composition of the ini-
tial characteristics, especially the initial heterogeneity in health. This result is consistent
with the literature showing that the increasing gap in life expectancy is due to the lower
probability of surviving (“survivability”) to the ages at which individuals can benefit from
the cardiovascular revolution (Dahl et al., 2024), which in our model is controlled by the
initial heterogeneity in health. Furthermore, our model results are also consistent with the
more classical approach that suggests that wealthier individuals invest more in health, which
in turn leverages improvements in medical technology tied to these investments (Hall and
Jones, 2007; Frankovic and Kuhn, 2019). These results underscore the importance of cre-
ating models capable of controlling for the selection, based on the evolution of the initial
characteristics into socioeconomic groups.

The remaining sections of the paper are structured as follows: Section 2 introduces
the main theoretical components of the model. Section 3 briefly explains how the initial
endowments impact the optimal life cycle choices. Section 4 focuses on the calibration of
the model, discussing the process of parameter determination and alignment with empirical
data. Section 5 presents our findings. Section 6 summarizes and discusses future directions
of research.

2 The model

We consider the life-cycle model of an individual born in year ¢, in which age ¢ is modeled
as a continuous variable between 0 (age 14 in real life) and 7' (maximum age).* Lifetime
uncertainty is captured by the survival function S;(t), which evolves over time according to
the following dynamic equation

Si(t) = —pa(t, My(£))Si(t). (1)

The term p;(t, M;(t)) is the mortality rate of an individual born in year ¢, which is a function
of age (t) and the modal age at death (M). The modal age at death is the most likely age at
which an individual will die. This statistical measure is frequently used in demography for
analyzing ageing, since it better captures mortality shifts at old age. Moreover, unlike the
life expectancy or the median age at death, it is not affected by infant mortality (Horiuchi
et al., 2013). To model the relationship between the mortality hazard rate and the modal
age at death we follow Canudas-Romo (2008), Horiuchi et al. (2013), Missov et al. (2015),
among others, and assume

ui(t, Ml(t)) = clhi + beb(t_M"’(t)), (2)

where ¢, ; is the Makeham component for the i-th birth cohort and b is the senescence rate.
The Makeham component represents the age-independent mortality (or age-independent risk
of mortality) and is depicted at the horizontal dashed line in Figure 2. The senescence rate
scales the age-related mortality risk. It captures the rate at which mortality exponentially
increases with age (see the diagonal dashed line Figure 2). The modal age at death M is the
most likely age at which individuals die or the age at which the distribution of deaths peaks
(see the vertical dashed line Figure 2).

We assume in the following that M;(t) represents the health status of an individual born
in year 7 at age t. At time 0 individuals are randomly endowed with an initial modal age
at death M;(0) = My ~ N (unr,03;), where pyy is the average initial modal age at death

4The maximum age T can be arbitrarily high in the model.
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Figure 2: Stylized decomposition of the mortality rate (blue line) and distribution of the age
at death (red line) using a Makeham-Gompertz’s law.

across the population and where 03, is the according variance. Individuals can postpone their
most likely age at death by investing m;(¢), tantamount to increasing their net health-related
consumption, according to the following health production function

Ml(t> = Ai(Ei,t)mi(t)vm. (3)

Here, A;(E;,t) reflects the effectiveness of health investments for an individual born in year
i at age t. We follow Frankovic et al. (2020) and Skinner and Staiger (2015) by modeling
medical progress, in the sense of increasing medical effectiveness, as a diffusion process®

=1 e (@
ga(E)(A* — A;) ift > 74 — 14,

where 74 is the year when a new medical technology that reduces the risk of dying is in-
troduced, and A* is the new medical technological frontier. While Frankovic et al. (2020)
and Skinner and Staiger (2015) consider diffusion at the macroeconomic level, we also follow
Frankovic and Kuhn (2019) by assuming that access to state-of-the-art medicine at the indi-
vidual level is depending on education. Thus, the term g4 (E;) is the inverse of the average
time for an individual with educational attainment E; to have access to the new medical
technology. More educated individuals are assumed to have access sooner to the new tech-
nology than less educated individuals. The term ~,, € (0,1) measures the returns-to-scale
of health investments in raising the modal age at death. The fact that health can postpone
the age at death by slowing down, but not reversing, the ageing process is well in line with
the gradual accumulation of health deficits (Rockwood and Mitnitski, 2007; Dalgaard and
Strulik, 2014). Moreover, historical data shows that the modal age at death for several coun-
tries was roughly constant before 1950 (see Fig. 1). Since we assume that the initial modal
age at death is randomly assigned, the value of M;(t) reflects individual frailty at age ¢. In
particular, given a path of health investments, individuals at age ¢ whose M;(t) is below the
average are expected to die sooner than individuals at the same age ¢ for whom M;(t) is
above average. This is an important feature of the model because it allows to combine the

5Solving Eq. (4) yields A;(E;,t) = A* + (Ai(E;, 74 — i) — A*)e  9EDH=TA) for ¢ > 7,4 — .



frailty model (Vaupel et al., 1979) with the Lee-Carter model (Lee and Carter, 1992) (see
Section B in the appendix), as the two leading mortality models in the fields of Demography
and Actuarial Sciences.

Preferences The expected lifetime utility of an individual born in year i at age 0, condi-
tional on the additional years of schooling (F;), the maximum age (7;), the non-health-related
consumption path (¢;), and the path of labor supply (¢;), is given by

E;

T;
Vi(Ei, T 6, b) = /0 e=PLS (U (ea(t), 43 (1)) dE — €. /O =P8 (1)dt. (5)

The first term on the right-hand side accounts for the discounted and expected stream of
utility from consumption and labor (with Ul(c, £) > 0, U/(c,£) > 0, Uj(c,£) <0, UlL(c, £) < 0,
Ujy(e,£) <0, and Uly(c,¢) < 0). The second term reflects the expected effort of attending
school (Sdnchez-Romero et al., 2016; Restuccia and Vandenbroucke, 2013; Oreopoulos, 2007),
which is an increasing function of the length of schooling, E;. The parameter p is the
subjective discount rate and S;(¢) is the survival probability to age t.

Budget constraint We assume that individuals start and terminate their life course (at
age T;) without financial wealth, such that k;(0) = k;(T") = 0. To rule out adverse selection
of health investments on the mortality risk premium, we assume individuals do not purchase
annuities. The lifetime budget constraint then reads

T; T;
/ (ci(t) +my(t))e "dt = / w; () H; (1) (t)e " dt, (6)
0 E;
where ¢;(t) and m;(t) denote non-health-related consumption and health investments, re-
spectively, and where  denotes the market interest rate. Consumption and health spending
across the life course are financed by the labor income earned after the completion of school-
ing at age F;. The labor income earned at age ¢ is given by the product of labor supply,
£;(t), age-specific productivity H;(t), and the wage rate per efficient unit of labor w;(t).
The age-specific productivity increases with schooling, following a standard Ben-Porath
technology, and declines at a rate that is proportional to the mortality rate. Thus, we specify
the productivity dynamics as

Hi(t) _ thi(t)W‘ — (b/,éi(t, Mi(t))Hi(t) for t < Ei, (7)

[t Ei)Hi(t) — dpa(t, Mi(t)Hi(t) for t > Ej,
where &, denotes the innate learning ability, v, € (0,1) denotes the returns-to-scale of
education, ¢ denotes the influence of health on labor productivity, w;(t, M;(t)) denotes the
mortality rate as a function of time and the modal age at death M;, and f (¢, E;) denotes the
contribution of experience, as measured by the gap t — E; > 0, to productivity. Note that
our formulation is consistent with the literature showing that productivity declines faster for
less healthy individuals (Weil, 2007; Kotschy, 2021; Bloom et al., 2024, among many others),
and with the way in which early-life health and educational outcomes jointly determine mid-
life health and income (Smith, 2007; van Kippersluis et al., 2010). Note here that a higher
modal age at death reduces the mortality rate — see Eq. (2)— and hence positively affects the
labor productivity of the individual and allows the individual to remain productive over an
extended stretch of time. Furthermore, variation in the modal age at death across individuals
of the same age implies variation in their productivity and in the extent to which they are
able to retain productivity over their life course.



3 Optimal life cycle allocation

To understand how individuals optimal allocate their resources to postpone their modal age
at death, we define three concepts: i) the value of human capital ¢ g, ii) the value of life ¢g,
and iii) the value of delaying the modal age at death 1,;.

The value of human capital (VoHK) at age ¢ is tantamount to the discounted value
of the earnings stream over the remaining working life

le(t) L aVi/aHi(t)

T; _j"' J
= S ) = /t wi () Hy (1) (r)e= I 745 gy, (8)

As becomes evident from the human capital dynamics, see Eq. (7), individuals with a better
health status (i.e. greater M;) are better able to remain productive and enjoy a higher
income, ceteris paribus their innate learning ability levels. For this reason VoHK increases
with health.

The value of life (VoL) at age ¢ is the willingness to pay for reducing the risk of dying
at age t (Rosen, 1988; Costa and Kahn, 2004), which can be calculated as the marginal rate
of substitution between financial wealth and the probability of survival

L 81/;/882(0 _ T U(Ci(7)7£i(7—)) _gel(t S EZ) — tTT s
= v ok W —/t Ueles(r), 6:(7)) el

The VoL is the monetized value of the expected utility at time ¢ of an individual or, equiv-
alently, the monetary value of the discounted stream of utility over the remaining life span.
Eq. (9) implies that individuals with higher human capital consume more and enjoy more
leisure so that, for this reason, they are willing to pay more for reducing their risk of dying.

The value of delaying the modal age at death (VoDeM) is the willingness to pay
for postponing the most likely age at which an individual will die.® To fully understand
VoDeM, however, we draw on the earlier interpretation of the modal age at death M;(t)
as a proxy for the individual’s health or frailty. Notably, improvements in health allow
the individual to defer mortality and, at the same time, better preserve it’s human capital.
Similar to VoHK and VoL, the VoDeM can be calculated as the marginal rate of substitution
between the financial wealth and the modal age at death

_ OVi/OM;(t) _ /T" —0pi(1, Mi(7))
TV Joki(t) ), OM;(7)

e2(t)

9)

WM (t) WH ()¢ +yf(r))e” F "dr. (10)

VoDeM amounts to the discounted stream of values associated with an improvement in
health, as proxied by M;(t), from age ¢t onward. This value is determined by the sum of the
gains in human capital, as valued by ¥ ¢, and survival, as valued by 97, that are afforded
through the reduction in mortality over the remaining life course that is implied by a higher
M;(t).” According to equation (10) VoDeM is driven by two opposing forces. On the one
hand, VoDeM rises with an increase in the value of human capital (/) and the value of
life (1/);9 ), holding age-related mortality constant. On the other hand, VoDeM declines when
the age-related mortality falls, ceteris paribus wiH and ’(/JZS . Therefore, our model suggests

6Note the conceptual difference to the expected age at death, which is the life expectancy (Canudas-Romo,
2008). In a model without mortality uncertainty, the modal age at death coincides with the life expectancy,
and with the maximum age.

“Kuhn et al. (2015) provide a similar conceptualization of a value of health (or generalized VoL to account
for the impact of health on the disutility of labor). Freiberger et al. (2024) provide a generalized value of
health, taking into account the prevention of large scale health shocks and acute and chronic treatment
following them.



that individuals with high incomes and poor health (measured through a low modal age at
death) are the most willing to invest in health, whereas individuals with low incomes and
good health are less willing to invest in health. Moreover, if two individuals have the same
labor income stream along their lives, the individual with worse health will invest more (resp.
less) early (resp. later) in life than the individual with better health.

3.1 Economic problem

The individual maximizes (5) by choosing the optimal path of m;(t), ¢;(t), ¢;(t) as well as
the optimal number of (additional) years of education E; and the maximum age T; subject
to (1)—(3), (6) and (7). The model is solved using the current value Hamiltonian (see the
solution in Section A in the appendix). From the first-order conditions we obtain the optimal
investment in health as

1

mi(t) = (ym Ai ()9 ()T (11)

Eq. (11) suggests that, akin to the finding in Frankovic et al. (2020), health investments
increase with medical effectiveness, A;, and with the VoDeM (or value of health), M.
Plugging (11) into (3) shows how the dynamics of the modal age at death depends on
medical effectiveness and the value that each individual assigns to delaying the modal age
at death

Mi(t) = Ai(t) =5 (o (8) T (12)

This result has two important implications. First, it implies that increases in the value
of human capital or in the value of life (hence in 1) raise the modal age at death even
when there is no change in medical effectiveness (i.e. A; = 0). Second, the contribution of a
marginal increase in the value of delaying the age at death to the increase in the modal age at
death is 7, times smaller than that of a marginal increase in the state of health technology.

From the first-order conditions and the envelope conditions we obtain the laws of motion
for consumption, labor, and health investments

(1)
(t
(

)

o
N

= Uc(t) (T —p— Mz<t7 Ml(t)))7 (13)

~— ~—

i

ﬁ«(i) = oult) (P et Z}Et; + [t Ei) + (1= ¢) it Mi(t))> 7 (14)

mi(t) 1 Ait)  —dM(@)

mi(t) 11— m <T+ Ai(t) VM () > ’ (15)
where 0. = —U./(cUs.) is the intertemporal elasticity of substitution (IES) in regard to

consumption, oy = Uy/(¢Uy) is the IES in regard to labor. Eq. (13) is the standard Euler-
condition in the absence of annuities. For » > p, the consumption path follows an inverted
U-shape, with the decline setting in once the mortality hazard becomes sufficiently high. For
a given lifetime income, the consumption profile will thus decline sooner for individuals with
lower modal ages at death.

Eq. (14) shows how hours worked evolve over the working life according to the difference
between p and r and the change in the wage rate, in experience, and in health, as proxied
by the mortality rate. Eq. (14) implies that individuals work harder today when the interest
exceeds the rate of time preference, so that they can save more today; and work harder in
the future when earnings are expected to increase either because of productivity growth or



growth in individual experience. The impact of mortality on labor is a priori ambiguous.
On the one hand, the mortality risk reduces future consumption and leisure (since both are
normal goods), and as a consequence the future labor supply increases. On the other hand,
mortality is associated (through a decline in health) with an erosion of human capital, which
creates an incentive to work harder today while productivity is still high. The net effect of
mortality depends on the impact of health on human capital. For ¢ < 1, individuals shift
labor to older ages, while for ¢ > 1 individuals work harder today.

Eq. (15) shows the evolution of health investments with age. Health investments tend
to increase with age in line with the interest rate (i.e. individuals prefer to save today and
invests the proceeds on health later in life) and in line with the rate in which personal access
to effective health increases, while they decline as the value of postponing the age at death
decreases. It is worth recalling that the lag in access to effective health technology tends to
imply that less educated individuals respond less in terms of health utilization to improve-
ments in the state-of-the art medicine, an effect that exacerbates an initial disadvantage
(Frankovic and Kuhn, 2019). Furthermore, the value of delaying the age at death declines
faster for frailer individuals. Consequently, for a given lifetime income, frailer individuals
will reduce their health investments earlier so that inequality in health tends to increase over
the life course both in respect to education and in respect to frailty.

The optimal educational attainment is chosen from a set of potential educational pos-
sibilities (E; € E) as the argument that maximizes the expected utility (5). According to
Sénchez-Romero et al. (2016), the optimal educational attainment satisfies that the returns
to education exceeds the pecuniary and non-pecuniary cost of education. The pecuniary cost
of education is the average return lost in the capital market due to postponing the entrance
in the labor market, whereas the non-pecuniary cost of education is determined by the ratio
between the effort of schooling and the value of human capital. Noting that individuals
expect to die with close to certainty before reaching the maximum age 77}, its optimal choice
amounts to a "technical” closure of the model. Further details on the first order conditions
can be found in Appendix A.

4 Model calibration

The model is calibrated to represent US males born in the years 1900, 1920, 1940, and
1960; i.e. i € {1900, 1920,1940,1960}. The wage rate per hour worked is considered to be a
function of exogenous wage rate growth (g,,), educational attainment (F;), learning ability
(&), experience (t— E;), and the health status. In our model the health status is captured by
individual frailty, which in turn is represented by the modal age at death. Frailty aggregates
all factors affecting mortality, e.g. acquired health deficits, environmental risks and innate
biological frailty (Zarulli, 2012). We consider two educational groups: college and non-
college. We set the educational attainment, E;, at 4 years for non-college education, and at
8 years for college education. The returns-to-education -y, is set at 0.66, similar to Cervellati
and Sunde (2013). To estimate the returns to experience, we assume the logarithm of the
wage rate can be approximated by a standard quadratic function on experience (see section D
for the regression analysis). The main parameter values of the model are summarized in
Table 1.
Individuals are assumed to have the following preferences:

(1—0'x—1
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Table 1: Model parameters

Symbol Value Reference

Preferences

Base level utility [ 6.0 Target: Avg. value of life of $6M

IES on cosumption O 1.0

IES on labor X 0.5 Keane (2022)

Share parameter of consumption o 2.67 Target: Average labor supply of 33% of avail-
able time

Subjective discount factor P 0.0 Lee et al. (2000) and Boucekkine et al. (2002)

Prices

Exogenous wage rate growth Juw gwt US Bureau of Labor Statistics, Gordon (2017),
and Human Mortality Database (2024)

Interest rate T 2.5% Target: Average growth rate of consumption
of 1%

Initial wage rate w 1.0

Mortality
Senescence rate
Makeham component

b 0.1000 Missov et al. (2015)
Elcu1000]  0.003817  See equation (17)
Elc,,1920]  0.001025

Elcu1040]  0.000990

E[C;L.IQGO] 0000938

Health investments

Initial state of medical effectiveness A(0) 0.15

Final state of medical effectiveness A* 0.20 Fonseca et al. (2020)

Education-specific time to access state- g (F) Frankovic and Kuhn (2019); Frankovic et al.
of-the-art medicine (2020) and Skinner and Staiger (2015)
Returns to health investments Ym 0.11 Target: Life expectancy at top 1% income for

the 1960 birth cohort

Human capital

Returns to education Vh 0.66 Cervellati and Sunde (2013)
Health impact on income 10) 0.848 Bloom et al. (2024)
Returns to experience 1 0.033959  Section D

Returns to experience-squared o -0.000533  Section D

Consumption and leisure (i.e., 1 —¢, when available time is normalized to one) are considered
additive separable. We express the utility from consumption in logarithmic terms for con-
sistency with balanced growth. This implies that the intertemporal elasticity of substitution
on consumption o, is one. Leisure, rather than labor, is modeled in the utility function to
account for the fact that the Frisch elasticity is increasing with age and might differ across
educational groups (Keane, 2022). The term x is the intertemporal elasticity of substitution
on labor gy, = x. The Frisch labor supply elasticity is XlTTZ, and w is the base level utility.
Following Nishiyama and Smetters (2014), who also model heterogeneous individuals, and
Keane (2022) we set the Frisch labor supply elasticity in the vicinity of 1.0 for prime age
workers. Thus, we set x at 0.5 and o at 2.67, so that prime aged individuals work 33.0
percent of their available time, which is similar to the average working hours reported by
Nishiyama and Smetters (2014).

The baseline utility @ is set at 6.0 to match a value of life close to $6M for the median
individual belonging to the 1960 birth cohort.® This parameter is important for modeling
a rising health share with increases in income (Hall and Jones, 2007). The exogenous wage

8The value of @ needs to be positive and sufficiently large to compensate for the negative effect on lifetime
utility of the effort of schooling.
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growth for the period 1900-2019 is based on time series data on the real hourly compensation
of workers, as taken from the US Bureau of Labor Statistics and Gordon (2017). Consistent
with our modeling setting, we detrended this data by the marginal impact of gains in health
(proxied by the adult survival ratio) on the wage rate. The adult survival ratio in the US for
the period 1933-2019 is taken from the Human Mortality Database (2024). After year 2019
we assume wages to increase at an annual rate of 0.875 percent, which is the last predicted
value using a LOESS regression on our constructed time series. We set the interest rate r at
2.5 percent and the subjective discount factor p at 0 percent, to match the increase by age
of the cross-sectional per capita consumption profile in the US, which is close to 1 percent
per year after controlling for the impact of mortality.”

Reduction in age-independent mortality. All birth cohorts are assumed to start with
the same distribution of the initial modal age at death N (s, 03,), and hence age-related
mortality rates. To account for the evolution of the age-independent mortality risk, we
calculate the Makeham component for each birth cohort i (i.e. ¢, ;) using the following
relationship

Cui = 130, — b-exp(b- (30 — par)), (17)

where p130; is the observed mortality rate at age 30 for US males born in 1900, 1920, 1940,
and 1960, and b is the senescence rate. We set b at 0.10, which is within the values esti-
mated by Missov et al. (2015). The mortality rates are taken from the US Social Security
Administration (Bell and Miller, 2005).

Medical technology. We set the elasticity of the demand for health care (v,,) at 0.11
to match the life expectancy for the top 1 percent income group for the 1960 birth cohort
as estimated by Chetty et al. (2016). In our analysis, we assume that the cardiovascular
revolution sets in from the 1970s onwards (Hansen and Strulik, 2017; Ford et al., 2007). We
set the initial state of the medical frontier A(t) for t < 74 at 0.15, where 74 is the year
1970. The latest state of the medical frontier is set at 0.20 in order to replicate the increase
in the average life expectancy for the cohorts born between 1900 and 1960. The value for
the latest state of the medical frontier implies that the medical productivity increases at an
annual rate of 0.72 percent over the period 1965 to 2005, which is the same as in Fonseca
et al. (2020). Following Skinner and Staiger (2015) we set the time gap between the highly
educated (vanguards) and less educated group (laggards) at 10 years. This is in line with
Cutler et al. (2006) and Link and Phelan (1995) who show that higher educated individuals
enjoy a health premium for their education when a new medical technology is introduced.

Impact of health on income. To parameterize the value of ¢ we follow Bloom et al.
(2024) who estimate that a 1 percent increase in adult survival leads to a 1.06 percent
increase in labor productivity. In our life cycle model, the estimated value from Bloom et al.
(2024) is equivalent to setting ¢ at 0.848(= 1.06 - 0.8).10 This value implies, according to
Eq. (14), that a one percent increase in the mortality rate increases the labor supply in the

9In many life cycle model with survival probabilities, it is standard to assume no subjective discount
factor (Lee et al., 2000; Boucekkine et al., 2002).

10Note that Bloom et al. (2024) regress the logarithm of labor productivity to adult survival, which is
defined as the probability of surviving to age 65 conditional on being alive at age 15 (i.e. S(65)/S(15)).
Given that in our model setup, the logarithm of labor productivity is proportional to the logarithm of adult
survival, we need to multiply the estimated coefficient 1.06 from Bloom et al. (2024) by the average adult
survival in their sample, which is 0.80.
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next period by approximately 0.175(= x(1 — ¢) = 1.15- (1 — 0.848)) percent, ceteris paribus
all other variables. We thus find the net effect of health improvements on the intertemporal
supply of labor to be small due to the offsetting impacts of a higher demand for leisure as
opposed to a greater productivity. This is in line with recent findings of almost no effect of
the gains in health on labor supply (Stephens Jr. and Toohey, 2022).

4.1 Bayesian melding

In addition to the standard parameters, we calibrate the initial unobservable characteristics,
namely the initial modal age at death M, the learning ability &5, and the schooling effort
&, of the agents using the Bayesian melding technique with the IMIS algorithm (Poole and
Raftery, 2000; Raftery and Bao, 2010). The Bayesian melding provides an inferential frame-
work for deterministic models taking into account both model’s inputs and outputs. An
important feature of this method is that it allows to calibrate the set of initial unobservable
characteristics of the model simultaneously without facing the Borel paradox. The (uncon-
ditional) distributions of these characteristics are fixed across birth cohorts. The fixation of
the characteristics across all birth cohorts allows us to observe compositional changes taking
into account selection effects (Sdnchez-Romero et al., 2023). We provide the details of the
Bayesian melding calculations in Section E.

Marginal posterior distribution of characteristics We define 8 = (uar, o, e, 0,
Le,,0¢,, pe) as a set of inputs. These inputs consist of the mean and standard deviation of
the modal age at death (uar,onr), the learning ability level (ue,,0¢, ), the effort devoted
to schooling (ue,,0¢,), and the absolute value of the correlation between learning ability
and schooling effort (p¢). These randomly drawn input sets are calibrated using a Bayesian
Melding approach to best match the observed life-cycle outcomes in the data. Using the
calibrated input sets €, we generate the marginal posterior distribution of the characteristics
(i.e., the initial modal age at death, learning ability level, and effort in schooling), obtained
after drawing a sample of 3000 input sets with repetition Raftery and Bao (2010). This
is shown in Figure 10 in Appendix E. The dashed vertical lines illustrate the values of the
parameter set with the highest likelihood, which is the one used to generate our results.

These characteristics are assumed to remain constant across cohorts. This assumption
implies that, while the unconditional distribution of the characteristics is identical across
cohorts, the conditional distribution by socioeconomic group—e.g., education or income—
may vary across birth cohorts. This variation enables control for selection effects into specific
socioeconomic (SE) groups. In the results section, we use income as the SE variable because
mortality by income level has not been used in the calibration process.

Figure 3 illustrates how the distributions of the characteristics for each educational group
change across birth cohorts. The upper panels show that college educated individuals born
in 1900 had on average a higher initial modal age at death, a lower learning ability, but also a
lower schooling effort than individuals with less than college education. As we move to more
recent birth cohorts (see bottom panels), the figure shows a convergence between the two
educational groups in terms of the initial modal age at death, learning ability, and schooling
effort. As a consequence, the learning ability of non-college educated individuals belonging
to the 1960 birth cohort is on average lower than of non-college educated individuals born
in 1900. Similar patterns are being obtained for Austria in Sénchez-Romero et al. (2023),
without considering health as an unobservable characteristic.

Model fit Figure 4 shows the fit of the model to education, demographic, and economic
data for selected birth cohorts. The figure is divided into eleven panels. The top panels are

12



Modal age at death, Mo

Learning ability, Eh

+ 4
_8 0.100 3 0.08 Less than college
8 8 0.075 , 0.06 College
9 c 0.050 0.04
£ o025 1 0.02
S 000 . : . o L : : . .00 L/ «ASESIIE .
60 70 80 90 0.0 0.5 1.0 1.5 0 10 20 30 40 50 60
+ 4
)
2 0.100 3 0.08
8 g 0.075 5 0.06
25 0.050 0.04
L o0.025 1 0.02 4
< 0.000 L L 0 L t 0.00 s L
60 70 80 90 0.0 0.5 1.0 1.5 0 10 20 30 40 50 60
+ 4
1)
2 0100 3 0.08
8 8 0.075 ) 0.06
9 £ 0050 N 0.04
£ o025 1 0.02 4
5 000 . h , o Lu . i . 0.00 N [N ,
60 70 80 90 0.0 0.5 1.0 15 10 20 30 40 50 60
+ 4
2 o.100 3 0.08
(=
Qg o075 , 0.06
2; 0.050 0.04
£ o025 1 0.02
2 5000 L h L o L L . L 0.00 L L L L
60 70 80 90 0.0 0.5 1.0 1.5 0 10 20 30 40 50 60

Effort of schooling, e

Figure 3: Conditional marginal posterior distributions of individuals’ characteristics on educational
attainment: selected birth cohorts (1900, 1920, 1940, 1960). The first column on the left shows the
distribution of the initial modal age at death (My), the second column is the distribution of the
learning ability level (&), and the last column on the right is the distribution of the effort of
schooling (). The characteristics of individuals with less than college are represented in blue,
while the individuals with college education are represented in orange.

devoted to education data (Panel A) and to the distribution of the wage rate at age 40 by
education group (Panels B and C). The middle panels depict cohort age-specific mortality
rates (in logs) for the selected birth cohorts (Panels D—G). The bottom panels show the
age-specific mortality rates (in logs) by education group for the 1940 birth cohort (Panels
H and I) and for the 1960 birth cohort (Panels J and K). Figure 4 shows that the model
is capable of replicating sufficiently well education, demographic, and economic data, even
if Panel A illustrates that the model tends to underestimate the proportion of individuals
achieving college education compared to the actual data. Moreover, it should be observed
that the age-specific mortality rates generated by the model deviate slightly from the recorded
mortality rates for ages 80 and above. However, this is not of deep concern since most of
the data for the ages above 80 are still unknown and are based on extrapolations.
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Figure 4: Model fit.

Notes: Black-red dots depict actual data on education, on the wage rate distribution for college and non-
college educated workers between ages 40-44 in year 2000, on death rates for each birth cohort, and on
mortality rates for college and less than college individuals belonging to the 1940 and 1960 birth cohorts.
Source: Data on educational attainment by birth cohort is taken from Goujon et al. (2016); cohort data on
age-specific mortality rates by birth cohort have been collected from the US Social Security Administration
(Bell and Miller, 2005). Cohort age-specific mortality rates by educational attainment have been calculated
using data from CDC (Mortality Multiple Cause Files). See the details of the estimations in appendix C.
The wage rate per hour worked for college and non-college educated individuals aged 40-44 in the year 2000
is taken from IPUMS-CPS data and controlled for race, occupation, industry, and state.
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4.2 Cross-validation: Evolution of life expectancy by income across
birth cohorts

Our model is capable of endogenously generating realistic age-specific mortality rates that
differ by socioeconomic group and birth cohort. To validate our simulation results on the
evolution of mortality, Figure 5 shows a comparison between our estimated life expectancy
at age fifty for males born in 1920 and 1940 by wage quintile (violet and yellow bars) and
the estimated life expectancy at age fifty for males born in 1930 (green bars), taken from the
Committee on the Long-Run Macroeconomic Effects of the Aging U.S. Population (NASEM
and others, 2015). We choose the data on males born in 1930, rather than in 1960, because
the mortality data on males born in 1930 relies less on extrapolations. Figure 5 shows that
our model is capable of generating a realistic life expectancy at age fifty by income quintile,
since the estimates for males born in 1930 by income quintile lie between the values we
estimate for the neighbouring 1920 and 1940 cohorts.

LE(50) by quintile and birth cohort

40

I Cohort 1920
N Cohort 1930

329
Cohort 1940 317

26.0 266 26.9

Years

Q1 Q2 Q3 Q4 Q5
Quintile

Figure 5: Estimated life expectancy at age fifty for US males born in 1920, 1930, and 1940,
by income quintile. Source: Data for 1920 and 1940 is generated with the life cycle model.
Data for 1930 comes from NASEM and others (2015), which was estimated using Health and
Retirement Study data.

To complement the previous validation, Figure 6 shows the expected age at death for
forty-year old men born in 1900, 1920, 1940, and 1960 by wage rate percentile simulated by
the model. This figure shows a positive relationship between the wage rate percentile and
the expected age at death for all birth cohorts, which becomes stronger for the most recent
ones. The difference in the expected age at death for forty-year old men between the 5th and
95th percentile groups is close to 2.0(= 73.9 — 71.9) years for the 1900 birth cohort, while
this difference is 10.8(= 86.0 — 75.2) years for the 1960 birth cohort. Comparing the red
dots to the blue dots shows that the model is capable of generating differences in expected
age at death by income that are consistent in shape with recent cross-sectional death rate
estimates for the US (Chetty et al., 2016). This is important because the model has not
been calibrated to target this data, which therefore cross-validates the model results.

In addition, Figure 6 shows that the widening difference in life expectancy across income
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Figure 6: Expected age at death for forty-year old US males born in 1900, 1920, 1940, and
1960 by wage rate percentile (age group 40-44). Notes: Gray dots depict the mean expected
age at death in each percentile group generated by the model. The blue line is the predicted
value of running a loess regression across all the expected ages at death. The red triangles
correspond to the estimated race- and ethnicity-adjusted life expectancy for forty-year old
men by household income percentile, 2001-2014 from Bergeron et al. (2022).

groups is the result of a slow increase in life expectancy between the 1900 and 1960 birth
cohorts for the lowest percentile groups (3.3 years for the 5th percentile group) as compared
to the highest percentile groups (12.1 years for the 95th percentile group). In other words,
the years of life gained at age forty per decade are 0.55 and 2.02 for the 5th and 95th
percentile group, respectively. In the next subsection, we focus on explaining the divergence
in the years gained.

5 Simulation results

In this section, we use the model to clarify the causes behind the increasing mortality gap
between socioeconomic groups. To represent different socioeconomic groups, we stratify our
sample by wage quintile groups. The wage rate is selected as the defining variable instead of
the labor income for two primary reasons. First, wage rate data has been used to calibrate
the model, ensuring consistency with empirical data (see Figure 4). Second, labor income is
influenced not only by the wage rate but also by labor supply, making it less stable than the
wage rate. To facilitate intra-cohort comparisons, we designate age forty as the reference
age group.

The model demonstrates that the widening gap in life expectancy across income groups,
observed between the birth cohorts of 1900 and 1960, is primarily driven by a selection process
shaped by a combination of external factors. These external factors include productivity
growth, reductions in non-age-related mortality, improvements in medical technology, and
the education-specific timing to benefit from the cardiovascular revolution (CVR).

The model shows that these external factors have disproportionately benefited individ-
uals with a specific set of initial characteristics, such as good initial health, high learning
ability, and low schooling effort. Although some of these characteristics were relatively evenly
distributed within the 1900 birth cohort, the influence of external factors over time has led
to a more pronounced selection of these traits across different income groups.

To generate the results, we have used the parameter set §* with the highest likelihood
obtained through Bayesian melding. Using this parameter set, we have simulated 10000
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initial characteristic profiles (M, &p, &), which reflect the heterogeneity within each of the
four U.S. birth cohorts analyzed—1900, 1920, 1940, and 1960—and solved their life cycle
models. However, the model could not be solved for all potential (including extreme) com-
binations of characteristics across all cohorts and counterfactual scenarios. This filtering
process reduced the sample size to n = 7415 unique initial combinations of characteristics,
which were consistently applied across cohorts and experimental scenarios.

In the following, we first focus on analyzing how the external factors positively influence
the correlation between income and life expectancy. Subsequently we show how the positive
correlation between income and life expectancy is driven by a selection process on a set of
characteristics that is amplified by the external factors.

5.1 External factors driving life expectancy disparities

To empirically validate that external factors have disproportionately benefited the life ex-
pectancy of individuals with higher income, we first analyze model-generated longitudinal
data spanning the 1900 to 1960 birth cohorts. Figure 7 illustrates the correlation between
income and life expectancy under the benchmark and three counterfactual experiments in
which the influence of a single factor has been shut off—no productivity growth (Exp. 1), no
improvement in non-age-related mortality (Exp. 2), and no medical progress (Exp. 3). We
conducted an additional experiment where we shut off the education-specific timing to ben-
efit from the cardiovascular revolution. However, the influence of this factor is significantly
smaller compared to the other three. For the sake of brevity, we have chosen not to present
the results here.

90 90 90

——Benchmark, 1900 ° ——Benchmark, 1900 ° ——Benchmark, 1900 °
No productivity growth, 1900 5 No Makeham improvement, 1900 S No medical progress, 1900 S
| ===Benchmark, 1960 ===Benchmark, 1960 ===Benchmark, 1960
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Figure 7: Differential impact of productivity growth (Panel a), Improvement in non-age-
related mortality (Panel b), and medical progress (Panel c¢) on life expectancy across income
groups: 1960 vs. 1900 birth cohorts.

Source: Authors’ simulations.

Specifically, Figure 7 compares, for each percentile of the income distribution, the increase
in the expected age at death between the 1900 and 1960 birth cohorts within the benchmark
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scenario to the respective increase within the counterfactual experiments. We see in this
figure that all three factors have contributed to a widening in the life expectancy gap across
income groups. For instance, Panel (a) shows that the productivity-driven increase in income
for the 1900 as opposed to the 1960 birth cohort has induced the life expectancy of individuals
with higher income to grow at a faster rate compared to lower-income groups. Panels (b) and
(c) show that the reduction in non-age-related mortality and medical innovation, respectively,
have disproportionally benefited, in terms of life expectancy gains, those in higher income
brackets.

Also note in Panel (a) that for the 1900 birth cohort, productivity growth already in-
fluences the expected age at death. This is because, in the benchmark scenario, individuals
benefit from productivity growth, which allows them to invest more in health and delay their
age at death. This effect is absent in Panel (b) because the Makeham component remains
the same for the 1900 birth cohort in both simulations. Regarding medical progress, the
impact is negligible because, by the time the cardiovascular revolution occurs, individuals
born in 1900 are already sixty years old.

To quantify the differential impact of income on life expectancy mediated by each external
factor, shown in Figure 7, we specify the regression analysis:

ALEf%o,p — ALETg60,, = Bo + Bip + ulo60 ps (18)

where ALE?gq0 , — ALEfgg , gives the change in life expectancy between the 1960 and 1900
birth cohorts that is attributable to factor ¢ at the percentile level p. The term p denotes
the income percentile and ranges between 1 and 100. 5f is the income gradient of the change
in life expectancy attributable to factor ¢, which is our parameter of interest, and u is a
counterfactual-specific error term.

Table 2: Marginal Effect of Income on Life Expectancy by External Factor

Dependent variable:
ALE?%OA,;) — ALEfyq,,

Experiment 1 Experiment 2 Experiment 3

p (percentile) 0.064(0.004) 0.064(0.004) 0.049(0.004)
Constant 0.487(0.235) —0.115(0.241) 0.746(0.210)
Observations 100 100 100

R? 0.721 0.711 0.653
Adjusted R? 0.718 0.708 0.649
Residual Std. Error (df = 98) 1.164 1.195 1.043

F Statistic (df = 1; 98) 253.320 241.273 184.136

Note: *p<0.1; **p<0.05; ***p<0.01. Exp. 1: No productivity growth, Exp. 2: No improvement in non-
age-related mortality, Exp. 3: No medical progress.

The results, as reported in Table 2, show that individuals who are one percent higher
in the income distribution benefited from an additional increase in life expectancy of ap-
proximately 0.064 years due to productivity growth, of 0.064 years due to the reduction in
non-age-related mortality, and of 0.049 due to medical progress.

5.2 The role of selection

The impact of the external factors—productivity growth, medical technological progress,
and reductions in non-age-related mortality—on the dispersion of the expected age at death
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across income groups is strongly amplified by selection. This is because individuals with
advantageous characteristics—better initial health (M), higher learning ability (&), or lower
schooling effort (§.)—are more prone to benefit from productivity growth, medical advances,
and the reductions in non-age-related mortality. To understand the selection process, we start
by presenting in Table 3 the mean of the main characteristics at age forty by income quintile
(obtained in the benchmark simulation) for those individuals who belong to the 1900 and
1960 birth cohorts.

Table 3: Mean values at age forty for the main characteristics by wage quintile and birth
cohort (in 2000 US dollars): Benchmark simulation

‘Wage Quintile Initial Learning Effort of College Labor in- Expected age
modal age ability schooling share come at death for
at death 40 years old

Birth cohort: 1900

Q1 71.60 0.38 16.05 0.02 4529 72.37
Q2 72.10 0.53 22.25 0.01 6522 73.17
Q3 72.22 0.64 27.18 0.01 8325 73.52
Q4 72.28 0.77 31.99 0.01 10770 73.84
Q5 72.12 1.00 38.02 0.00 16 699 74.13
Birth cohort: 1960

Q1 69.80 0.44 18.81 0.12 17746 76.49
Q2 71.40 0.58 24.69 0.13 24 888 78.96
Q3 72.28 0.67 28.67 0.16 31742 80.51
Q4 72.86 0.76 31.15 0.25 41363 81.85
Q5 73.99 0.88 32.16 0.47 70956 84.61

Note: We take as the reference income $37 339, which is the median value of earnings of male full-time, year-
round workers in the US in year 2000, see Money Income in the US 2000 (U.S. Census Bureau, 2001).

Table 3 reports for the 1900 birth cohort how despite the clear gradient in terms of
learning ability, effort of schooling, and labor income, the life expectancy and the initial
modal age at death are quite similar across the quintile groups. In contrast, for the 1960
birth cohort, this table shows that the learning ability and the effort of schooling are more
evenly distributed than for the previous cohort. However, the expected age at death, initial
modal age at death, college share, and to a lower extent labor income have a clearer gradient
now. This is because the external factors reduced the relative cost of education for the 1960
birth cohort and some individuals with good characteristics selected themselves into higher
education, which allowed them to have higher income and better health, leaving the group
with less than college education with worse characteristics.

To see the influence of this selection process on the expected age at death, we compare
in Figure 8 the distribution of the age at death for the 1900 and 1960 birth cohorts under
the benchmark and the distribution that would result from taking the distribution of the
characteristics by income quintile for the 1900 birth cohort and applying it to the 1960 birth
cohort. Comparing panels A and B in Figure 8, we can show that the difference in the
expected age at death across quintiles is minimized, which suggests that the selection effect
is the main driver of the increasing gap in life expectancy across income groups.

To assess the contribution of the selection of characteristics to the shift in the distribution
in the age at death for 40 years old by income, we run additional regressions in which the
increase in the modal age at death until age 40 for the 1960 birth cohort is regressed on
the characteristics and the educational choice. This regression approach was chosen because
it directly isolates the effects of specific characteristics on changes in modal age at death,
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Figure 8: Distribution of the age at death for forty year old individuals by income quintile
and birth cohort under two different simulation scenarios.
Note: 1900 birth cohort are in blue, while 1960 birth cohorts are in orange.

providing insights into how these characteristics interact with income to influence outcomes.
We choose the increase in the modal age at death because according to (1)—(3) and (11)
this measure depends directly on income. Contrary to the life expectancy that depends on
income and the initial health state. Moreover, we standardized the covariates in order to
better compare the influence of each characteristic on the increase in the modal age at death.
The mean and the standard deviation of each characteristic can be seen in Table 5.

The regression equation that we use is:

log(y) = Zoo + Zy1c + ¢, (19)

where y is the n x 1 vector with the expected increase in the modal age at death until age
40 for the n individuals born in year 1960, Z is the n x 3 matrix containing the standardized
covariates (zar,, Z¢,, Z¢, ), Where z, = ﬁ is the variable x standardized. o is 3 x 1 vector
of regression coeflicients associated with the skill groups NC, while ~ is a 3 x 1 vector of
regression coefficients capturing the differential effect of college education on the increase in
the modal age at death. 1¢ is a dummy vector n x 1 indicating whether individuals belong to
skill group C, such that 1¢ equals 1 for individuals in group C and 0 otherwise. € represents
the n x 1 vector of residuals. To solve this regression we apply the two-stage residual inclusion
(2SRI) method (Terza et al., 2008), because education is a binary endogenous variable in
the model.

According to (19) the constant term represents the log of the expected value of the
dependent variable when all the characteristics are at their mean values (because scaled
variables have a mean of 0). A positive value in «; implies that a one standard deviation in
the characteristic ¢ € { My, &p, &} is associated with a e* — 1 increase in the modal age at
death if the individual is not college educated, and of e*:*7 —1 if college educated. Note that
income also increases given the positive relationship between the increase in the modal age
at death and income. The results shown in Table 4 suggest that the average forty-year-old
individual benefits from an increase in the modal age at death of 5.36 years (= exp 1.68).
However, individuals with an initial modal age at death or a learning ability level that is one
standard deviation higher than the average experience additional increases in the modal age
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Table 4: Contribution of each individual characteristic on the increase in the modal age at
death (evaluated at age 40) of individuals born in year 1960 by educational choice: Bench-
mark simulation

Dependent variable:

First stage (1¢)
probit

(1)

Second stage (y = E[AM (40)])
glm: Gamma (link = log)

(2)

Residuals 0.126(0.002)
Initial health 1.905(0.060) 0.008(0.0004)
Learning ability 2.780(0.114) 0.062(0.001)
Schooling effort —6.352(0.205) —0.009(0.001)
Initial healthx College 0.056(0.001)
Learning ability x College 0.157(0.002)
Schooling effort xCollege —0.235(0.003)
Constant —3.515(0.101) 1.680(0.0004)
Observations 7415 7415

Log Likelihood —1080.270 4214.678
Akaike Inf. Crit. 2168.539 —8413.356

at death of 0.8 percent and 6.4 percent for non-college-educated individuals, respectively,
and 6.6 percent and 24.5 percent for college-educated individuals. This outcome is primarily
explained by the higher income resulting from the additional accumulation of human capital.
It is also notable that the influence of learning ability is approximately four times greater
than that of the initial modal age at death.

In contrast, individuals with a one standard deviation higher effort of schooling benefit
0.9 percent less than the average individual if they are non-college educated and 21.7 percent
less if they are college educated. This result is explained by two reinforcing mechanisms.
First, a greater effort of schooling increases the cost of attaining college education. Second,
this effect is more pronounced for college-educated individuals compared to non-college-
educated individuals, as the additional non-pecuniary cost of schooling reduces the value of
life, thereby diminishing the willingness to invest in health.

It is also important to understand how the characteristics interacts with each factor.
To do so, we calculate the difference between the increase in the modal age at death in
the benchmark and in each experiment, in which we shut off the evolution of each external
factor, and regress it with respect to the characteristics conditional on the education choice
in the benchmark and the counterfactual. The resulting regression equation is:

y'=Za"+ ZIBCIIC\IC%C +ZY1¢ ne + Z‘;Clccﬂc + &%, (20)
where y€ is the n x 1 vector representing the difference in the increase in the modal age
at death until age forty between the baseline and the counterfactual experiment ¢ for the
n individuals born in 1960. Z is the n x 3 matrix containing the standardized covariates
(Znm0, Zen, Zee). @ is the 3 x 1 vector of regression coefficients associated with the refer-
ence group—individuals who are non-college-educated both in the benchmark and in the
experiment—while 3¢, 4¢, and §° are 3 x 1 vectors of regression coefficients that capture
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the marginal effects of belonging to any of the other three potential combinations of educa-
tional choices between the benchmark and the experiment. The terms 1¢,,, for e, e’ € NC, C,
are n X 1 dummy vectors indicating whether individuals belong to the education groups
non-college or college in the benchmark and in the experiment. &° is the n x 1 vector of
residuals for the counterfactual experiment. Similar to (19), we solve this regression using

the two-stage residual inclusion (2SRI) method (Terza et al., 2008).

Table 5: Summary statistics: Characteristics of the 1960 birth cohort by experiment

Experiment 1 Experiment 2 Experiment 3
Benchmark—Experiment Symbol Mean Std. Mean Std. Mean Std.
Total
Population size n 7415 7415 7415
Initial health My 72.07 4.6 72.07 4.6 72.07 4.6
Learning ability &n 0.67 0.22 0.67 0.22 0.67 0.22
Schooling effort Ee 27.1 8.96 27.1 8.96 27.1 8.96
Non-College—Non-College
Population size n 5740 5730 5742
Initial health My 71.13 4.42 71.12 4.41 71.13 4.42
Learning ability &n 0.72 0.21 0.72 0.21 0.72 0.21
Schooling effort & 29.58 8.29 29.58 8.3 29.57 8.3
Non-College—College
Population size n 6 16 4
Initial health My 72.04 4.83 77.28 5.16 78.27 1.91
Learning ability &n 0.64 0.27 0.88 0.26 1.12 0.11
Schooling effort e 24.88 10.02 25.65 3.61 27.72 1.64
College—Non-College
Population size n 1594 1181 1496
Initial health My 75.06 3.56 74.71 3.63 74.9 3.54
Learning ability &n 0.49 0.17 0.52 0.17 0.5 0.17
Schooling effort & 18.8 5.05 20.09 4.75 19.15 4.89
College—College
Population size n 75 488 173
Initial health My 79.68 3.66 76.62 3.48 78.46 34
Learning ability &n 0.37 0.13 0.39 0.14 0.36 0.15
Schooling effort & 13.95 3.76 14.94 3.93 13.69 4.07

Note: Exp. 1: No productivity growth; Exp. 2: No improvement in non-age-related mortality; Exp. 3:
No medical progress.

Table 6 shows the critical role of individual characteristics, such as initial health, learning
ability, and schooling effort, in shaping the impact of external factors—productivity growth,
reductions in non-age-related mortality, and medical progress—on the increase in modal
age at death. The results are broken down into three experiments: no productivity growth
(Exp. 1), no improvement in non-age-related mortality (Exp. 2), and no medical progress
(Exp.3).

The first column presents the impact of individual characteristics on the increase in
the modal age at death for forty years old driven by productivity growth. According to
(20), the constant term informs that productivity growth had an expected impact on the
increase in the modal age at death for forty years old of 1.525 years for the average individual
when all the characteristics are at their mean values. Recall that positive values indicate
a greater disparity in income and life expectancy. The results reveal that individuals with
a one standard deviation higher initial health experience a faster rise in the modal age at
death, translating into higher income and life expectancy gains due to increased health and
productivity: 0.039 years for the reference group—mnon-college educated individuals, 0.095
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Table 6: Average impact of individual characteristics by educational attainment on the
increase in modal age at death at age 40 for the 1960 birth cohort, conditional on external
factors (second stage)

Dependent variable: y¢ = AMP®(40) — AM ©(40)
Bench - Exp. 1 Bench - Exp. 2 Bench - Exp. 3

Residuals (NC—C) —0.802(0.036) —1.363(0.039) —0.784(0.107)
Residuals (C—NC) 0.774(0.006) 0.888(0.006) 0.784(0.006)
Residuals (C—C) 0.942(0.023) 0.130(0.008) 0.495(0.015)
Non-College—Non-College (Reference)

Initial health 0.039(0.001) 0.043(0.001) 0.037(0.001)
Learning ability 0.105(0.002) 0.030(0.001) 0.091(0.002)
Schooling effort —0.079(0.002)  —0.070(0.001)  —0.078(0.002)
Non-College—College

Initial health 0.056(0.055) 0.109(0.014) 0.206(0.071)
Learning ability 0.312(0.050) —0.055(0.020) 0.153(0.042)
Schooling effort —0.316(0.042) —0.432(0.055) —0.577(0.225)
College—Non-College

Initial health 0.343(0.003) 0.283(0.003) 0.332(0.003)
Learning ability 0.946(0.008) 0.802(0.007) 0.921(0.007)
Schooling effort —1.341(0.010) —1.066(0.010) —1.282(0.009)
College—College

Initial health 0.177(0.009) 0.107(0.003) 0.235(0.006)
Learning ability —0.114(0.046) —0.016(0.011) 0.320(0.027)
Schooling effort 0.077(0.050) —0.174(0.013) —0.695(0. 029)
Constant 1.525(0.001) 0.195(0.001) 1.141(0.001)
Observations 7.415 7.415 7.415

R? 0.968 0.989 0.978
Adjusted R2 0.968 0.988 0.978

Note: Exp. 1: No productivity growth; Exp. 2: No improvement in non-age-related mortality;
Exp. 3: No medical progress.

(= 0.039+40.056) years for those individuals who move from college to non-college due to the
increase in productivity, 0.382 (= 0.039 4 0.343) years for individuals who decided to move
from non-college to college due to the increase in productivity, and 0.216 (= 0.039 + 0.177)
years for those individuals whose educational decision to stay in college is not affected by
the increase in productivity. The impact of the increase in productivity for individuals with
above-average learning ability levels is stronger than for those with above-average initial
health. Note from Table 5 that, despite the fact that the marginal impact of the raise
in productivity becomes negative for the learning ability coefficient for those who stay in
college, they benefit from productivity growth because they have below-average learning
ability levels.

The impact of productivity growth on the increase in the modal age at death for in-
dividuals with above-average schooling effort is negative. From Table 5, we observe that
the majority of individuals facing this negative effect belong to the group who remain in
non-college education, as their schooling effort is above-average. For individuals who remain
in college education, the impact is almost negligible (i.e., —0.002 = 0.077 — 0.079).

The second and third columns in Table 6 demonstrate the effects of reductions in non-age-
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related mortality and medical progress on the increase in the modal age at death by individual
characteristics. Comparing the constant term across the three counterfactual experiments
suggests that the impact on the increase in the modal age at death of productivity growth
is greater than that of medical progress and much greater than the reduction in non-age
related mortality. The sign and magnitude of the coefficients associated to characteristics
are very similar to those in the first column, except for individuals transitioning from college
to non-college. However, as shown in Table 5, the small sample size of this group prevents
us from drawing definitive conclusions.

6 Conclusion

We have devised a novel life-cycle model, based on demographic principles, that endoge-
nously determines the most likely age at death. Individuals decide about their educational
attainment, consumption path, labor supply, and health investments, conditional on a set of
unobservable characteristics that control for heterogeneity in health, labor income, and edu-
cation. The model has been calibrated using the Bayesian melding to replicate the evolution
of the educational attainment, the distribution of income, and the death rates for US males
born in 1900, 1920, 1940, and 1960.

In this paper, we show that our life-cycle model can accurately replicate the widening
disparity in life expectancy across cohorts by socioeconomic status. Through counterfactual
analyses, we find that medical progress, productivity growth, and the reduction in age-
independent mortality have all positively contributed to the increase in life expectancy.

The findings presented in this paper also show the critical role of individual character-
istics, such as initial health, learning ability, and schooling effort, in shaping the impact of
external factors—productivity growth, reductions in non-age-related mortality, and medical
progress—on the increasing mortality gradient across socioeconomic groups. In particular,
we obtain that selection effects significantly amplify life expectancy disparities, as individ-
uals with advantageous traits are more likely to benefit from these external improvements.
Moreover, the results highlight the dynamic interplay between education, income, and health
outcomes, demonstrating that higher learning ability, lower schooling effort, and to a smaller
extent lower initial frailty, not only lead to greater life expectancy gains but also contribute
to increasing inequalities across income groups.

Our results suggest that in order to model the widening gap in life expectancy across
socioeconomic status, it is necessary to develop models that account for the negative selection
process within lower socioeconomic groups. The strong role of the selection process across
cohorts also suggests that policies, such as universal health insurance, targeted provisioning
of (state-of-the-art) health care, or educational campaigns, which are aimed at curbing the
socio-economic gradient to the gains in longevity may need to be readjusted over time so
as to keep track of the compositional changes, especially in regard to the underlying health
traits, within observable social groups.
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A Life cycle model

The problem of the individual is to maximize (5) subject to (1)—(3), (6), (7) and the boundary
conditions on capital k(0) = k(T) = 0. To solve the problem we use the following current-
value Hamiltonian

H=SU(c,0) —&1(t < E))
+ Ap(rk + wHLL(t > E) — ¢ —m)
+Au (EpH™1(t < E)+ f(t, E)H1(t > E) — ¢ppu(M)H)
— Aspu(M)S
+ Ay Amm, (21)
and the inequality conditions v;(1 — ¢) and vof. The term 1(+) is an indicator function that
takes the value of one when the inequality is satisfied and zero otherwise, and (g, Ag, As, Aar)

are the set of shadow prices associated with the state variables: capital (k), human capital
(H), survival (S), and modal age at death (M), respectively.

Solution Given number of years of schooling F, to achieve a maximum the individual
problem must fulfill the following necessary conditions for all ¢ € [0, T]:

e First-order conditions (FOCs):

C: /\k = SUC
{: wHMN, = —SUy+1v1 — vy fort > F
m: e = Mg Avypmm =t

where v and v, are the Lagrange multipliers associated with the Kuhn-Tucker condi-
tions.

e Envelope conditions (ECs):
Mo = Aelp 1)
Mg =i (p— &mH™'1(t < E) = f(t, E)1(t > E) + ¢pu(M)) — \yw(1(t > E)
As = As(p+ p(M)) — (U(c7 £ —&1(t < E))
Aar = Aup + f (M)(ArdH + AsS)
e Transversality conditions (TCs)
A (T) >0, Aa(T) =Xs(T) = A (T) =0
e Optimal maximum age condition
Hx(T7), X(T7), A(T7), T") = 0,

where x(T') is the vector of controls at time T (¢(T), £(T"), m(T)), X(T') is the vector of
states at time T (k(T), H(T),S(T), M(T)), and X(T) is the vector of adjoints at time
T Me(T), A (T), As(T), Aps(T')). This condition implies that the optimal maximum
longevity T is reached when the value of life is equal to the instantaneous consumption;
i.e. U/U. = c. For computational issues, we define a T** such that S(7**) ~ 10~3 and
impose the restriction that T = min{T™, T**}.

e Optimal educational attainment: Given the optimal path of consumption, health in-
vestments, labor supply, and the maximum age condition for each possible E, the
individual chooses the number of years of education that maximizes (5).
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B Frailty model

In this section we show that our mortality hazard rate contains features of the health-deficit
model (Dalgaard and Strulik, 2014), the Lee-Carter model Lee and Carter (1992), and the
frailty model (Vaupel et al., 1979). To do so, we use the definition of the mortality hazard
rate in terms of the modal age at death

it M () = ¢+ be? M),

Substituting the modal age at death at time ¢ by the integral from 0 to ¢ of (3) gives
u(t, M(t) = c, + pelt—b(Mo+ [ A(sym(s)mds)

where Mo ~ N (uar,0%,) is the initial modal age at death, which is distributed according
to a normal distribution with mean pj; and standard deviation oy, and the integral term
is the total increase in the modal age at death from age 0 until age ¢, which we will denote
from now on by AM(t) = fot A(s)m(s)Y™ds. Multiplying the terms inside the parenthesis
by the natural rate of ageing, we have

pu(t, M(t)) = c,, + bebt—bMo—bAM(H) (22)

Ageing process. A realistic feature of the health-deficit model (Dalgaard and Strulik,
2014) is that individuals accumulate health deficits as they age. The higher are the number
of health deficits, the faster they accumulate (i.e. the faster is the ageing process), and the
greater is the probability of dying. Individuals can reduce the speed of aging by investing
in health. This feature is shared in our framework. Taking the logarithm of the difference
between the mortality rate and the age-independent mortality (i.e. the Makeham component)
and differentiating with respect to t gives the speed of ageing or the senescence rate

2 Jos(ult, M(1)) ) = b(1 — Altym{1)™). (23)
The above equation shows that similar to the health-deficit model (Dalgaard and Strulik,
2014), individuals can reduce the senescence rate from it’s natural level, b, by investing
in health. In particular, given an initial modal age at death My our model implies that
individuals who invest more (resp. less) in health will have a lower (resp. higher) senescence
rate and hence a higher probability of living longer.

Lee-Carter model. Similar to the Lee and Carter (1992) model, our senescence rate will

not change monotonously over the life cycle due to the fact that health investments vary

non-monotonously over the life span. Rearranging Eq. (22) and taking the log, we obtain
log (4(t, M(1)) — c,) = log be!=40) -+ (—B)AM(t) + (—b) (Mo — pias),

ag b,k €

where the first term on the right hand side corresponds to the general shape of the mortality
schedule a;, the second term corresponds to the rate of decline in mortality over time b, k;,
and the last term is the residual term € ~ N(0,b%03,) in the Lee-Carter model.
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Frailty model. By rearranging the terms in (22) we obtain the standard frailty model
(Vaupel et al., 1979) augmented with gains in senescence

pu(t, M(t)) = ¢, + e'osb=bMo+bt=bAM(D)
= ¢, + Zaet(—t" 1AM (24)

where

b0
Z =exp {—b(Mo — par) — 2M }

b2 2
a = exp {logb— bunr + ZM}

There are several key findings from (24). The first thing to notice is that the mortality
hazard rate exactly coincides with the frailty model when there are no health investments
(i.e. AM(t) =0). Second, given that E[Z] is equal to zero by definition, we obtain that in
two populations with similar s, the population with the highest o2, will have on average
a higher mortality than the population with the lowest o3, (Vaupel et al., 1979).

C Age-Specific Mortality Rates by Educational Attain-
ment

We compute period life tables by education based on the Mortality Multiple Cause Files
provided by the Centers for Disease Control and Prevention (from now on CDC data).'!
These data contain information about the resident status, age, education level, and the
cause of death for defunct people on a yearly basis. The CDC data for years earlier than
1989 do not provide information about education, and therefore we restrict the data to the
1989-2019 period. We only consider US-residents for which age is known, reported in years,
and smaller or equal to 100. We recode the causes of death following the shortlist of causes of
death provided by the Human Cause-of-Death Database (HCD).'? The shortlist of causes of
death is the same for all countries contained in the HCD database and contains 16 different
causes of death. The causes of death in the CDC data before 1999 are coded using ICD-9
codes, which for comparability with successive years we convert into ICD-10 codes using the
conversion tables provided by the Canadian Institute for Health Information (CIHI).!* Some
ICD-9 codes cannot be converted. As these codes are unrelated to heart diseases, we group
them and convert the underlying cases to Other causes. It is important that heart diseases
are converted correctly since they are used to build the counterfactual mortality rates under
the presumption that the cardiovascular revolution had not occurred.

We merge the IPUMS USA population data with the CDC data to estimate the mortality
rates by education for male US-residents using the year of observation, age, and highest
educational attainment. We are able to compute mortality rates by educational attainment
for 1990, 2000, and yearly from 2000 to 2019 because the IPUMS USA population data are
available only on a decennial basis for years earlier than 2000. The educational attainment,
for both the CDC data and the IPUMS USA data, is recoded such that we obtain two
distinct groups, college and less than college. We assign individuals with more than 12 years

Hhttps://wuw.cdc.gov/nchs/data_access/vitalstatsonline.htm

2https://www.mortality.org/Data/HCD

Bhttps://secure.cihi.ca/free_products/conversion-tables-ICD10CA-ICD9-ICDICM-CCI-CCP-en.
x1lsx
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Figure 9: Mortality Rates: mortality rates by educational attainment as estimated from
CDC data as compared to the mortality rates for males obtained from the Human Mortality
Database (HMD) and the Human Cause of Death Database (HCD).

of completed education to the college group, with 12 or less than 12 years of completed
education to the less-than-college group, whereas individuals with no formal education are
not considered. Since the CDC data contain observations with unknown education, we
estimate bootstrapped mortality rates by cause of death for US-resident males aged between
20 and 95 years. First, we exclude observations with unknown educational attainment from
the CDC data. Then we compute the share of observations excluded by age and year of
observation, exclude the same share of observations by age and year of observation from the
IPUMS USA population data - the educational attainment of the excluded individuals is
random - and compute the mortality rates by year, age, education and cause of death using
the resulting population by year, age and education. We repeat this process 1,000 times and
average over the obtained mortality rates to obtain robust bootstrapped mortality rates by
year, age education and cause of death. If there is no unknown educational attainment for
a combination of age, year and cause of death, we do not need to estimate bootstrapped
mortality rates. The mortality rates by education and year are not smooth for higher ages,
most of the time mortality rates start becoming erratic from age 80 to 85 onwards. To smooth
the mortality rates we apply a Kannisto model for ages above 80. Finally, we estimate the
life table by education for males resident in the United States between ages 20 and 95. In
Figure 9 we compare the estimated log-mortality rates by education to the log- mortality
rates from the Human Mortality database (HMD) and the Human Cause-of-Death database
(HCD).'15 Our estimates appear to be consistent with the HMD and HCD mortality rates
since both lie between the mortality rates for higher (college) and lower (less-than-college)
educated people.

Mhttps://wuw.mortality.org/
https://www.mortality.org/Data/HCD
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D Wage rate estimation

To estimate the components (81, 82, ¢) of the wage equation we collected individual data
from IPUMS USA on labor income and on the average number of hours worked by age,
year, education, industry, occupation and race. We calculated the years of experience as
the difference between the age of each individual and the age at completing school, and we
grouped the years of experience into five-year intervals. Before estimating the returns to
experience (81, f2), we regressed the logarithm of the wage rate per hour worked using the
fixed effects model log Wetins = PEE + Ve + V¢ + Vi + Yo + Vs + €etios, Where pg is the return
to education, E denotes the additional years of education starting from age 14, ~. is the
experience fixed effect, v, is the year fixed effect, ~; is the industry fixed effect, 7, is the
occupation fixed effect, and ~, is the state fixed effect.

Table 7 presents results for three alternative models. In model (1) both education groups
(college and non-college) are included into the regression, whereas models (2) and (3) provide
regressions for the two education groups in separate. From the regression results on the years
of experience from model (1) we approximated the working ability profile using a quadratic
function of the years of experience 4, = Ct 4+ 31Exp + B2Exp? 4 u., where Ct is a constant
term, Exp is the years of experience, and u, is the error term.

Table 7: Estimated return on experience by education

Dependent variable: log(wage per hour)

Aggregated education college less than college
@ @) 3)
5 to 9 years of experience 0.223*** 0.211%* 0.171%**
(0.010) (0.014) (0.017)
10 to 14 years of experience 0.381*** 0.404*** 0.319***
(0.010) (0.013) (0.016)
15 to 19 years of experience 0.494*** 0.510*** 0.421***
(0.010) (0.013) (0.016)
20 to 24 years of experience 0.564*** 0.552*** 0.471%**
(0.009) (0.012) (0.015)
25 to 29 years of experience 0.585*** 0.560*** 0.506™**
(0.009) (0.012) (0.015)
30 to 34 years of experience 0.593*** 0.547** 0.511%**
(0.010) (0.013) (0.016)
35 to 39 years of experience 0.630*** 0.514***
(0.013) (0.017)
returns to education: college 0.047***
(0.001)
returns to education: less than college 0.035***
(0.001)
returns to education 0.060*** 0.024***
(0.001) (0.001)
Constant 2167 2.058** 2.400***
(0.043) (0.068) (0.065)
Total Weighted Observations 12,552,970 6,532,227 6,020,743
Observations 101,258 58,800 42,458
Adjusted R? 0.316 0.238 0.176
Residual Std. Error 0.602 (df = 101172) 6.882 (df = 58716)  6.514 (df = 42373)
Note: *p<0.1; **p<0.05; **p<0.01
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E Bayesian melding

Let F(-) denote our life-cycle model. The model is used to replicate the educational, mor-
tality, and income distribution of the cohorts born in 1900, 1920, 1940, and 1960 in the
US. Each cohort is assumed to be represented by a set of J = 1000 heterogeneous agents,
whose permanent and unobservable characteristics are randomly assigned at birth and are
identical across cohorts. Let the set of permanent and unobservable characteristics of the
j-th agent be (Mo;, & j,&e,j), where My, is the initial modal age at death, &  is the learning
ability level, and & is the effort of schooling. The initial modal age at death Mj is assumed
to be Normal-distributed N (uar,0%;). The pair of unobservable characteristics (£, &) are
assumed to be drawn from a bivariate Clayton copula formed by two Gamma distributions

2 2 2 2
M 0— M e U e

(Ehv 56) ~C Fl gh ) i 5F2 g y £ (25)
O‘&h Mgh 0—56 /‘I’Ec

Let D denote the combination of the normal distribution and the copula; i.e. D = N X
C(T'1,T2). Our calibration problem involves seven parameters or inputs,

0 = (unr, o0, Hgy s He. s O, 0., ) € © CRY

taken from the feasible parameter set

© = (pm, inr) X (om,001) X (e, Tier,) X (0¢,,,98,) X (e, e.) % (9¢,,T2.) X (pe, Pe),

where the symbols z and T denote the minimum and maximum value of parameter x, re-
spectively. The pair (par, opr) is the mean and the standard deviation of the initial modal
age at death, ji¢, is the average learning ability, ji¢, is the average effort of schooling, o, is
the standard deviation of the learning ability, o¢_ is the standard deviation of the effort of
schooling, and p¢ is the absolute value of the correlation between learning ability and effort
of schooling.

Let the prior distribution on inputs p(©) be the product of uninformative priors p(©) =
U (0). Let ¢ € @ be the set of outputs generated from the model F' given the inputs 6; i.e.
F(0) = ¢. Let us denote by ¢ the set of outputs used for the calibration and by ¢™ the set
of outputs not used for the calibration, i.e. ¢ = (¢, ¢"). The outputs ¢ are a sequence
of economic and demographic data for the 1900, 1920, 1940, and 1960 birth cohorts, which
we will fit to actual data. In particular, we generate: i) the fraction of individuals within
each birth cohort with non-college education ¢'¢(6); ii) the average cohort-life expectancy
at age 14 for each birth cohort ¢2¢(#); iii) the wage rate distribution of workers aged 4044,
who were born in year 1960, with non-college education ¢3¢ () and with college education
#*¢ (), respectively; iv) education- and age-specific mortality rates for the 1940 and 1960
birth cohorts; and v) age-specific mortality rates for the 1900, 1920, 1940, and 1960 birth
cohorts.'® Let the prior distribution on outputs used for the calibration ¢(®“) be

1 if [|¢p79(0) — ¢C|| < Ajv/m,
€ otherwise,

q(2%) = H q;(79) with ¢;(®7) = {

where (ch is the vector of observed data for sequence j and A; is the maximum threshold
allowed for the difference between the generated and the observed sequence of data j.

16To generate the data for each birth cohort, we draw a sample of N individuals with their unobservable
characteristics for a given set of inputs 6 € © using the distribution D.
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Let the likelihood of the model’s output for calibration ¢¢ be given by

£(¢°|data) o< exp {—; S0 - T W (6 0) - a?jc)} (26)

where W is the weighted matrix for the sequence of data j, which is assumed to be an
identity matrix I.

We implement the Bayesian melding with the IMIS algorithm, with the prior as impor-
tance sampling distribution. Specifically, we pursue the following steps:

e Initial stage:

1. Draw Ny = 7000 independent and identically distributed (i.i.d.) samples, {61,...,0n,},
from the joint prior distribution on inputs p(0).

2. For each ; sampled, run the model to obtain the set of outputs, i.e. F(6;) = ¢$.

3. Calculate the likelihood of each model output ¢

L(¢S|data) for i = {1,..., Ng}

4. Construct the importance weights for each 6;

o a@OLEC )
w(6;) x vazl (60 )L(6C |data) fori={1,...,No}

e Importance Sampling Stage: For k =1,2,...

1. Choose the current maximum weight input as the center

o = 6,), ... w0
argee{af-[-l.a,givkil} (w( 1) w( Nk—l))

2. Estimate ©(®) as the weighted covariance of the B = 100 inputs with the smallest
Mahalanobis distances to (%), where the distances are calculated w.r.t. the covari-
ance of the prior distribution and the weights are (w(6;) + N ,w(fp) + o)
The Mahalanobis distance is:

4(0,6%) = /(6 — 60) Q@ x (9 - 6)

where @ is the covariance matrix of the prior distribution on inputs

3. Sample B new inputs (0n,_,+1,---,0n,_,+5) from the multivariate Gaussian dis-
tribution

Hy, - N(9%) 52(R) (27)

4. Calculate the likelihood of the new inputs and combine the new inputs with the
previous ones. Form the importance weights:

bi .
w(f;) =c- Q2(¢¢C)E(¢i0) X qg()(e)) for i = Np—1 +1,..., Ng. (28)
with ¢(®)(6;) = %—fp(ﬁz) + 1\%25:1 H,(6;), where Hy(6;) is the probability of

having input 6; in the multivariate Gaussian distribution A(6(*), %)), ¢ is a
scaling factor that guarantees ZZV’“ w(6;) =1, and N = Ny + kB.
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e Resample stage: Once the expected fraction of unique points in the resample Zf&l (1—
(1 —w(h;))”7) is at least 0.632 out of 3500 random draws, we resample J = 200 inputs
with replacement from {61, ..., 60x, } with weights {w(01),...,w(0n,)} to approximate
the posterior distribution of the inputs and outputs.

The model and the Bayesian melding with the IMIS algorithm have been programmed in
Julia. To find the initial co-state variables of the life cycle model, we have used the Mixed
Complementary Problems solvers contained in the NLSolve package. The Bayesian melding
has reached the stopping criteria after 55 iterations.

Marginal posterior distribution of inputs Figure 10 shows the marginal posterior
distribution of the model inputs 6. Figure 10 suggests the existence of multiple combinations
of # € © that provide a likely fit to the data. Therefore, the Bayesian melding is a good
option for calibrating the model in order to avoid invertibility problems (Poole and Raftery,
2000). Moreover, an important feature of the calibration strategy is that it is not necessary
to run sensitivity analysis against these parameters. This is because the calibration already
provides the results of combining different parameters values.
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Figure 10: Marginal posterior distributions of inputs 6. The terms punr, oar, e, , O¢p s Mee, Teos Pt
stand for the average initial modal age at death, the standard deviation (std.) of the initial modal
age at death, the mean learning ability, the std. of the learning ability, the mean effort of schooling,
the std. of the effort of schooling, and the correlation between the learning ability and the effort of
schooling, respectively.
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